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to be 0.112 A shorter than the sum of the Pauling 
covalent radii for carbon and sulphur. This bond must 
therefore possess considerable double-bond character. 

Cucka (1963) also puts forward an argument for the 
existence of a similar ring system in that his calcu- 
lations support the evidence for hydrogen atoms at- 
tached to C(2), C(3), C(4) and N(2). Thus it appears, 
from these two X-ray investigations and Hedgley's 
observations, that there is now sufficient evidence to 
confirm the existence of the tautomeric form (I) of 
pyridaz-3-thione not only in solution but in the solid 
state as well. 

We should like to acknowledge the very helpful sug- 
gestions that came from Professor Dame Kathleen 
Lonsdale and Dr Judith Milledge concerning the at- 

tempts made to analyse the thermal vibrations of this 
structure. Although the analysis did yield qualitative 
indications of the molecular vibrations to be found in 
structures of this type, they were not sufficiently ac- 
curate to merit publication. The calculations were car- 
ried out with Dame Kathleen's kind permission on 
the Pegasus computer in her department, and in this 
connection we are grateful to Dr C.J. Brown for the 
use of his programs. 

We also acknowledge the use of programs written 
by Drs J. S. Rollett, Jean Dollimore and J.W. Jeffery, 
and one of us (M.B.H.) is grateful to the Common- 
wealth Scholarships Commission, for the tenure of an 
award while in this country. 
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The procedure is intended primarily as an intermediate step between the interpretation of an electron 
density map of medium resolution and the refinement of the structure. The procedure builds a represen- 
tation of a polypeptide using images of amino acids as determined in small structures, rendered suitably 
flexible by rotations about single bonds (and other lines if required) and uses the method of least squares 
to fold the resulting chain and side chains to approach the guide points (derived from the electron den- 
sity map or otherwise) as closely as possible. Thus an idealized structure can be derived from a selec- 
tion of rough coordinates and a knowledge of the sequence. The procedure is also capable (with limita- 
tions) of bridging uncertain regions. 

Some novel mathematical techniques of general interest are described and employed. These include 
reversion and a sliding filter as means of combating non-linearity. The sliding filter is a means of sup- 
pressing large shifts by excluding from the least-squares process those eigenvectors of the normal 
matrix which have small eigenvalues. This is done in a manner depending on the residual. 

A means of achieving accurate rotations in three dimensions without setting up a matrix is also given. 

1. Introduction 

1.1. General 
It is a difficult matter, even at the highest resolution, 

to determine atomic coordinates in a protein with an 

accuracy better than 0.25 A. It follows that if a flexible 
chain with idealized links can be threaded through 
such coordinates (here called guide coordinates) with 
comparable accuracy then such a chain is reasonable 
in its stereochemistry and equally consistent with the 
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X-ray observations. A method of refining the course 
of such a flexible chain against the X-ray observations 
has already been described (Diamond, 1965). This 
refinement procedure leaves bond lengths and (in most 
cases) inter-bond angles unaltered, and it is therefore 
desirable that the chain being refined should at the 
outset possess reasonable values for these quantities 
free from the substantial random errors which are 
inevitable if the coordinates of atoms are determined 
independently. The procedure described in this paper 
is designed to provide a chain structure as a starting 
point for the chain refinement process. 

The advantages offered by this approach may be 
summarized as follows: 

(i) The resulting stereochemistry is necessarily con- 
sistent with studies of small structures. 

(ii) The parameters involved are the conformational 
parameters which are the centre of attention in 
contemporary studies of protein conformation. 
They number approximately ½N where N is the 
number of non-hydrogen atoms, compared with 
3N for x, y and z. 

(iii) The conservation of the integrity of the chain 
ensures that the final coordinates of each atom 
are influenced by many atoms acting cooperatively, 
thus providing, in effect, a better 'signal to noise 
ratio' than would be the case if all the x, y, z 
were independent. 

(iv) By the use of substantial lengths of chain and 
matrix diagonalization techniques, those combina- 
tions of rotations which for the smallest shifts 
provide the biggest improvement may be deter- 
mined and employed. 

Against all this may be raised the one objection that 
by imposing predetermined characteristics on the struc- 
ture one may be enforcing an error if the structure 
genuinely differs from expectation in an unalterable 
manner, but it seems unlikely that the X-ray evidence 
in any instance will be strong enough to establish a 
variation of a type which cannot be accommodated by 
the provision of appropriate flexibility. In such an 
event one is always free to release the atoms concerned 
from the chain constraints. 

The procedures described here are regarded, there- 
fore, as primarily a crystallographic tool, rather than 
a trial and error search process such as that of Nrmethy 

& Scheraga (1965), although they may already be used 
to some extent in that way, and have enormous po- 
tential for development in that direction. 

In its present form the method can handle any chain 
for which: 

(i) Side chains (unless r igid)join the main chain at 
a point not a ring, as in nucleic acids. 

(ii) Side chains which are themselves forked have not 
more than one branch flexible. 

(iii) Side chains, if flexible at all, are flexible in the 
innermost bond (C~-C~,  Z~). 

(vi) 

(iv) If a side chain is flexible, at least one of the main 
chain bonds adjacent to the point of union (C~) 
must also be flexible. (Usually both such bonds 
are flexible, but if only one is, then it must be the 
same one throughout the chain, and the direction 
of progress will be dictated by this. Rigid side 
chains (e.g. proline) do not introduce such re- 
strictions.) 

(v) The link, i.e. that part of the main chain occurring 
between two side chains, must not itself be altered 
in shape by any of the rotations permitted to it. 
(See §2.2.4, however). 
The link must contain 4 or 5 atoms. 

Proteins naturally meet all these requirements and 
there may well be other polymers for which the proce- 
dure is useful. 

The first four of these requirements arise because 
the topology of the molecule is implied entirely by the 
ordering of the entries for atoms, main chain param- 
eters, and side chain parameters in the listing which 
is assembled. If these rules were departed from, the 
logic of the program would need reorganizing. The 
source of the fifth requirement will be clear in §2.1, 
and the sixth is simply a storage requirement. 

Hitherto, hydrogen atoms have not been included. 

1.2. Outline procedure 
The program* first reads standard groups in the form 

of named sequences defining the various types of side 
chain and two copies of the main chain link (described 
more fully in §2.1). These sequences are introduced by 
cards carrying 3-letter names such as ARG for arginine, 
and contain coordinates of the various atoms each 
with an identifying name (such as CB for the fl carbon 
atom) and with parameter cards inserted between pairs 
of atoms where it is intended that the line joining them 
should be a line about which rotation may take place. 
Inter-bond angles may be made variable by using a 
dummy atom to define an axis of rotation normal to 
the plane containing the bonds concerned. The orien- 
tation of these groups is such that the two copies of 
the main chain link, (called the link and precursor), 
together with any one of the side chain groupings, form 
a fragment of a polypeptide chain consisting of the 
side chain and main chain up to and including the 
neighbouring C~ atom on each side. The link and 

precursor each include a Q at each end, the one which 
is common to both being set at the origin. Each side 
chain grouping is also referred to that position as 
origin, but does not normally contain an entry cor- 
responding to the C~ position. The spatial relationship 
between the link and the precursor is used to define 
the relationship produced by the building process, and 

* The program is written in FORTRAN II and requires a 32K 
storage machine of 36-bit words. It uses the IBM internal code 
as given on page 97 of IBM publication C28-6054-2 Fortran 
Manual for purposes of character recognition and in its present 
form is therefore specific to IBM machines. 
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which, if  perpetuated without alteration, yields a helix, 
normal ly  an e-helix. 

Having read the standard groups the program then 
reads the amino acid sequence which it is required to 
build, in which each residue is introduced by a sequence 
card bearing the name of one of the standard groups. 
Each sequence card may be followed by as many or as 
few coordinate cards as desired, these being the rough 
coordinates used to guide the process. Each of these 
is identified by a name which must match the name of 
the corresponding atom in the link group or in the 
s tandard group nominated by the previous sequence 
card. Each sequence card may also be followed by 
parameter  cards which, if  present, cause the corres- 
ponding angles in the computed structure to have their 
initial values altered by the amounts  given on the cards. 

The f inal values adopted by these angles, however, are 
determined by the guide coordinates, so that  the initial 
and final values of such an angle are only equal  (in 
general) if  the selection of guide points used leaves the 
angle concerned indeterminate (e.g. in a side chain if  
only main  chain guide coordinates are given). The 
s tandard groups must be provided in Cartesian co- 
ordinates in ,~,. The guide coordinates must  be given 
in crystallographic fractional coordinates and the out- 
put listing is also in this form. All internal working 
is in Cartesian coordinates in A. 

The basic sequence of  events is best described by 
the flow diagram of Fig. 1. Note that if  sequence cards 
alone are given the building process perpetuates the 
relationship between the link and precursor, thereby 
building (usually) e-helix until  some guide points are 

-----~ Advance residue number 

Test any more residues to build 

yes no 

build one side chain and one link 
onto the previous link 

test whether any initial values of 
parameters ¢-0 are given in region 
just built 

n o  yes 

apply indicated rotations in 
this region 

1 
test whether any guide coordinates are 
given in the portion just built 

r i o  

set switch to 1 
] 

reset switch to 2 
refine long probe 

I 

yes 
I © 
I 2 switch 

© 

>refine 1st short probe+- 
refine 2nd short probe 

Entry with one link 
and no side chain 
(i.e. the root group) 
laid down, and switch 
in position 2. 

refine last short probe < 

(i.e. adjust rotational parameters 
to fit guide coordinates) 

test whether last probe has 
reached end of list 

no yes 

1 
exit 

Fig. 1. Outline flow diagram. 



256 A M A T H E M A T I C A L  M O D E L - B U I L D I N G  P R O C E D U R E  FOR P R O T E I N S  

encountered. When these are encountered a long probe 
refinement is done, i.e. the entire helix is adjusted 
at its root (i.e. fixed end) to bring its tip into coincidence 
with the guide points. This is done in a way which 
is formally analogous to the elastic bending of a beam 
clamped at one end, wherein the strain is distributed 
so as to minimize the elastic strain energy consistant 
with providing the required movement of the tip. 

The program then goes on to refine several short 
probes (at least one, not more than four) which are 
lengths of most recently built chain, whose conforma- 
tions are still under review. Each probe has its control 
quantities set by data cards, which specify, inter alia, 
its length in residues (except for the long probe whose 
length is governed by the length of helix which has 
been built without guidance). The first short probe is 
likely to contain the newly built link and side chain and 
half of the previous link. This includes ~0 and gt (in the 
new proposed notation of Edsall, Flory, Kendrew, 
Liquori, Ndmethy, Ramachandran & Scheraga, 1966) 
of the new residue and therefore possesses sufficient 
freedom to allow the new residue to take up any re- 
quired conformation, assuming that the previously 
built residue has been correctly placed. This first short 
probe is the one that does nearly all the work; in 
building a non-helical region, for example, the initial 
conformation presented to this probe is normally c~- 
helical, and this probe may be required to produce 
rotations of the order of hundreds of degrees to nego- 
tiate a comer. All such angular rotations are deter- 
mined with the use of linear least-squares methods, and 
special techniques have been developed which ensure 
rapid convergence from far outside the region of 
linear behaviour; these are described below. Despite 
this, it occasionally happens that the process finds a 
local minimum away from the correct conformation, 
and in such cases parameter cards may be used to 
modify the initial conformation before refinement so 
as to put it in the right convergent region. In practice, 
this only occurs in the main chain with conformations 
accessible only to glycine in the right hand half of the 
steric map of Ramachandran, Ramakrishnan & Sasise- 
kharan (1963), i.e. if ~0 differs from the e-helical value 
by ~ + 100 °, and such conformations are fortunately 
uncommon. False minima associated with side chains 
have been found to occur only with side chains having 
large rigid groups when it is possible for the newly 
built link and the side chain group each to prevent the 
other from reaching the required position, but this 
too can be very easily avoided, either by using param- 
eter cards as above or by using only a few guide points 
in the rigid group so that any conflict between the new 
link and the side chain is unbalanced and therefore 
quickly resolved. 

The second and subsequent probes are normally 
longer than the first, and they permit the revision of 
conformations following further building. Thus, if a 
probe length of 9 residues is used (the maximum with 
present compilations) each residue gets refined nine 

times by this probe before it is left alone, and on the 
last occasion it has a fixed (finalized) residue on one 
side of it and eight already well positioned residues 
still under revision on the other side of it, so that each 
residue is eventually well bedded in with quite long 
range considerations taken into account. 

The program terminates only when the root end of 
the last (longest) probe reaches the end of the molecule. 

2. Mathematical aspects 

2.1. The building process 

Unlike most other model-building procedures which 
have been described in the literature, e.g. N6methy & 
Scheraga (1965), this procedure does not keep a record, 
in the form of a rotation matrix, of the orientation of 
any particular link of the chain, and the development 
of the initial coordinates for a link and side chain (i.e. 
prior to refinement) is a one-step matrix multiplication 
in which the prefactor is a 3 × 5 matrix containing the 
coordinates of the five atoms in the precursor, i.e. the 
last previous link in the model, and the postfactor is 
a constant matrix, and of these there is one for each 
side chain type and one for the link. 

Fig.2 shows schematically the arrangement and or- 
dering of atoms in the link and precursor as input in 
the standard groups. We may define certain matrices, 
as follows, using capital letters for the standard group 
orientation and lower case for the corresponding 
quantities in the computed model. 

L = / xl x2 . . . . . .  .x% 
Yl Y2 . . . . . .  Y5 ) zl z2 . . . . . .  z5 

defines the link, in which the last column vanishes. 
Similarly P defines the precursor, in which the first 
column vanishes, and for each side chain type we define 
a matrix S containing standard group coordinates in 
three rows and as many columns as the side chain 

1Ca 

4 2 3 

link 

Ca 

precursor 

CaB 

Fig. 2. Schematic diagram of the link and precursor as used for 
building proteins. This diagram is for identification only and 
does not imply that the link and precursor are normally 
coplanar. The arrangement shown implies that the input 
and final listings are to begin at the N-terminal end and that 
the C-terminal end is to be built first. This procedure could 
be reversed by interchanging the link and precursor and 
reversing the numbering. Solid circles: nitrogen; open circles: 
oxygen. 
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requires. Then if p is a matrix obtained from the com- 
puted model by inserting the coordinates of the last 
link to be computed and subtracting the first column 
from every column (i.e. taking the tip C~ as origin), 
the coordinates of the next link and side chain to 
be built are, relative to the same origin, 

1 = A L  
s = A S  

where A is an orthogonal transformation satisfying 

p = A P .  

Postmultiplying this equation by P(PP)- t ,  where the 
tilde denotes a transpose, gives 

plS(pp)-I -- APP(PP)-I  -- A. 
Thus 

I = A L  
becomes 

and 
l =  pP(PP)-IL 

s =pP(PP)-~S.  

Thus matrices of the form 

V = P ( P P ) - : L  and P(PP)- :S  

may be calculated once and for all at the outset, after 
which the store originally containing the standard 
groups as input is over-written with a library of ma- 
trices V, and the building operation consists in selecting 
the appropriate V for link and side chain and evaluat- 

ing l = p V  and s = p V .  

There are two conditions which must be met for 
this process to work. The first is that PP  must be non- 
singular so that it may be inverted. This means that 
at least three of the columns of P must be linearly 
independent, whereas it is an unfortunate fact that the 
precursor is a two-dimensional figure so that the rank 
of PP  is only two. Now, it is in any case convenient 
to maintain five columns in p and 1, so that the p for 
one calculation may be obtained from the I of the pre- 
vious one by subtracting the first column from every 
column, but this does mean that, as defined, the first 
column in p is effectively a spare, and the singularity 
of PP  is dealt with by loading the spare column with 
the vector product of the second column with the third. 
and the matrices p and V are calculated accordingly, 
In this form the process can cope with a two-dimen- 
sional link, but would fail with a linear one. 

The second requirement is one of accuracy. Suppose 
that P0 is the initial precursor group in the computed 
model, on which all else will be built, then 

and 
Ii = p0V = p01~(PP)-IL 

Pl =1~ . 

i.e. 11 with the first column subtracted from every 
column, and 

12 =p lP (PP) - :L  

which contains a translation and a rotational part 
equal to 

I1P(PP) -1L = po[P(PP) -1LI 2 . 

i.e. it is clear that the coordinates of the qth link contain 
the qth power of the matrix P(PP)-IL. 

Now, if L' is L with the first column subtracted from 
every column, and if the standard link and precursor 
are perfect copies of each other, then 

L' = BP 

where B is an orthogonal transformation, and it is 
easy to show that [t'(PP)-IL]q contains Bq. It is clear 
that if the process is to be applied many times without 
introducing systematic drift of the link coordinates, 
B must be a highly perfect orthogonal matrix, i.e. L 
and P must be perfect images of each other. Now, the 
program is designed so that this stringent requirement 
need not be met by the standard groups as read in, 
but is imposed by revision of L as part of the initializa- 
tion, and before the V are calculated, so that the V for 
the link contains the revised figures. 

If B0 is defined by* 
L' = BoP 

where L' and P are as input,  then, as before 

Bo = L'P(P.P) -1 

and B0 is then approximately orthogonal if L' is only 
approximately an image of P. We then write 

Bn+,  = ½(Bn + g~- l )  

and iterate until Bn is perfect, and then discard L' in 
favour of BnP. This is a second order process, and it 
may be shown that if 

B n n n  = I + mn  

where I is the identity matrix and mn is a matrix of 
residuals, then 

Thus for a computation of q links the matrix q mn  
should have elements of the order 10 -1°. With q--250 
and m0 containing elements ,-,4 x 10 .3 it appears that 
n =  2 should suffice, and that n = 3 would certainly be 
enough. The program allows n to go up to 4, and this 
has enabled a helix of 20 residues to be built with the 
coordinates in the first and last link agreeing to six 
significant figures (at which point the output was trun- 

* This equation implies that it is possible to represent L' as 
a linear (not necessarily orthogonal) transformation of P. If 
L' and P, as input, do not have this property then this equation 
represents equations of condition (with the residuals omitted) 
and the following equation for B0 provides a least-squares solu- 
tion. 
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cated), even though the input link coordinates pos- 
sessed only slide-rule accuracy. The a-helix produced 
had a rise per residue of 1.4985 .~. 

A geometrical analogy to the refinement of B may 
be helpful. The columns of B represent three vectors in 
an arbitrary orientation, except that ideally they should 
be mutually perpendicular and of unit length. If these 
three vectors are taken to represent a unit cell, then the 
corresponding columns of 1]-1 are the reciprocal lat- 
tice vectors. If we continually replace the (crystallo- 
graphic) vector a by ½(a + a*) (likewise b and c), we are 
bound to approach the unit cube as unit cell. Clearly the 
final Bn splits the difference between the matrix re- 
quired to relate the initial L' to P and that required to 
relate P to the initial L'. 

The program must also be supplied with a representa- 
tion of the first group P0, called the root group, regard- 
less of whether guide points are also provided for it, 
and this group, too, is replaced by CuP before use, 
where Cn is derived and refined in just the same way 
as Bn. 

2.2. Refinement procedures 
2.2.1. General 

Each probe which is to be refined has a free end, 
most recently built, and a root end which is generally 
attached to a finalized and therefore fixed portion of 
the computed model. To begin with, however, when 
only the root group or a few residues have been built, 
the allowed length of a probe may exceed the then 
existing length of computed model, in which case the 
root end of the probe will have a termination group as 
its footing. This group must be provided among the 
standard groups and is automatically incorporated 
at the end of the listing. It normally includes only 
dummy atoms, parameter cards, and a free cast-off 
card sufficient to provide the root group with six de- 
grees of freedom. Alternatively, it may contain just a 
fixed cast-off card in which case the root group will 
be fixed where it is planted, as may be useful if it is 
desired on one occasion to build further upon the re- 
sults obtained on an earlier occasion. 

Since the tip of each probe is always free (though it 
may be guided) equations of constraint, in the mathe- 
matical sense, are not required. The only consequence 
of the chain character of the problem is that the param- 
eters are highly correlated; the fact that the computed 
coordinates of any one atom may be a function of 
many parameters is not a complication. 

Let D be a column vector, partitionable in threes, 
each three elements comprising difference vectors of 
the form d=rguide--rmodel where the r's are position 
vectors, then the equations of condition may be written 

OR 
D = - ~ -  19 + e + 2nd and higher order terms 

where e is an irreducible residue of the same form as 
D, R relates to the model coordinates, O is a column 
vector containing the rotational shifts to be applied and 

0 R .  
- ~  1s a rectangular 

0R 
0 0  

matrix of the form 

0 X  1 0 X  1 

001 002  " . . 

~y, 

0Z1 

c~0~ 

~x2 
-b0] 

the 01 being elements of the vector O. 
We wish to minimize ee, which is the sum of the 

squares of the distances between the guide points and 
the refined model coordinates. Linear least-squares 
theory then sets 

0R 
- - ~ = 0  
0 0  

giving the normal equations 

0R 0R 0R 
- - D -  - - 1 9  
019 8 0  019 

to which the solution is 

19= 019 019 

in which the quantities within the round brackets form 
the normal matrix. This theory ignores the presence of 
the second and higher order terms in the equations of 
condition. Including them leads to a quite intractable 
problem, but it is clear that they must be important 
here because the movements produced by large rota- 
tions cannot be expressed as a linear function of each 
0. We resort to the usual technique of applying repeated 
cycles of refinement (one would suffice for a linear 
problem) and aim to make the convergence as rapid as 
possible. 

We define the spindle of any parameter as a vector 
of unit length in the direction of the line joining the 
points (atoms) in the computed structure between 
which a parameter entry has been inserted. These en- 
tries originate in the standard groups from which the 
final listing is assembled. The origin of a spindle is 
always to be at the end nearer the root and simple 
rules have been laid down for locating the origin of a 
spindle at a fork in the chain where it cannot always 
be arranged that the origin is on an adjacent entry in the 
listing. If we denote a spindle vector as n then the 
components of n ix r i j  form a 3x  1 submatrix of 
0R/01D, relating parameter i to atom j where rl~ is the 
position vector of the atom expressed relative to the 
origin of the spindle. All the quantities appearing in the 
normal equations are therefore readily accessible. Only 
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guided atoms on the free side of a parameter have de- 
rivatives with respect to that parameter, since we treat 
each parameter as if it contributes only to movements 
to the free side of it. (If, in any given instance, it is 
required that the free end of a probe should not move 
and that its root end should, then a combination of 
shifts exists and may be found which expresses this, 
provided that a suitable termination group is present.) 

Elements of the matrix (OR/OOD) (of which there is 
one for each parameter) are formally analogous to the 
total couple exerted on each spindle supposing the 
guided atoms to be tied to the guide points with elastic 
in which the tension is proportional to the correspond- 
ing Idl. No weighting scheme has been employed in 
this work (mainly for storage reasons), but a weighting 
of the equations of condition would correspond to 
differing strengths of elastic. In any case, the response 
of the system (i.e. shifts produced in a least-squares 
cycle) is elastic with uniform torsion constants in the 
spindles. These too, could be weighted to represent the 
differing stiffnesses of inter-bond angles and dihedral 
angles (see §4.2); however, these elastic analogies are 

Z E  2 Z kS 2 

l 

0 1 
k 

Fig.3. Schematic representation of the possible behaviour of 
the sum of squares of errors in a least-squares problem, k is 
a scalar fraction such that the shifts actually applied are k 
times the calculated shifts. Curve 1 is parabolic and corre- 
sponds to a linear problem having no 2nd and higher order 
terms in the equations of condition. The minimum occurs 
for full shifts (k= 1). Curve 2 corresponds to a non-linear 
problem where the non-linearity is hindering, but not enough 
to prevent convergence. Curve 3 corresponds to a case where 
the non-linear terms are so large that the error actually rises 
if full shifts are applied, giving rise to an unstable situation. 
Curve 4 is a case where the non-linearity is actually helping. 
All such curves have the same slope at k = 0 and all can oc- 
cur in practice. The ratio of the ordinates 6]~0 is g(k) (see 
text). 

only valid if one supposes that for any least-squares 
cycle, the initial conformation is an equilibrium one. 

2.2.2. Reversion, or the use of  fractional shifts 
Suppose that the solution O to the normal equations 

has been found and that a scalar multiple, k, of these 
shifts is applied, then for a linear problem the sum of 
the squares of the errors descends parabolically as k 
runs from 0 to 1 and the overall drop is equal to 222s 2 
where 2 are the eigenvalues of the normal matrix and 
s are the corresponding eigenshifts, the summation 
being over those eigenvectors which contribute to O. 
This will become clearer in the next section. For  the 
present, the relevant point is that Z2s 2 is an available 
quantity, so that the parameters of the parabola are 
fully determined without reference to the actual be- 
haviour of the sum of the squares of the errors. 

We may then define a linearity index, g(k), by 

g(k)= 
reduction in sum of squares of errors 

actually obtained 

reduction in sum of squares of errors 
that would be produced by the same 

shifts if the system was linear 

(Fig.3). 

~0 

g(k) approaches unity i fk  is small or if the elements of 
O are themselves small*, g(k) exceeds unity if the non- 
linearity is helping, is less than unity if it is hindering 
and is negative in unstable situations (Fig. 3), and as 
such it serves to characterize the behaviour of the prob- 
lem and provides a criterion for the application of 
fractional shifts. Normally, full shifts ( k =  1) are ap- 
plied and if the linearity index is found to be below 
some minimum acceptable value go (normally zero), 
then back shifts are applied to halve k, this halving 
being repeated until the criterion is met, as it must be, 
provided go < 1. We call this process reversion and it 
is used only defensively, i.e. if the technique of filtering 
has failed to produce a satisfactory value of g(1). 

2.2.3. Filtering 
Filtering provides a means of selecting those linear 

combinations of parameters which are most effective 
in improving the fit, and of excluding those combina- 
tions of parameters which disturb the structure grossly 
and to little advantage. A fixed filter has been em- 
ployed previously (Diamond, 1958) in a different con- 
text with a linear problem. In this work we use a sliding 
filter, principally to combat non-linearity. A sliding 
filter selects these combinations of parameters by ref- 
erence to the current value of the residual. The theory 
will now be developed, ignoring the non-linear terms 
until the end. 

* Computationally, on a final cycle, when the elements of 19 
are very small, g(k) becomes indeterminate. 
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We rewrite the normal equations as 

~ R  ~ R  J R  ~ 
T - f f o - D = T  j ~  j--~ TTO 

in which T is orthogonal and 

JR JR ~ 
A = T - -  T 

JO JO 

is a diagonal matrix containing the eigenvalues ). of 
the normal matrix and T contains its eigenvectors 
(rows). 

We then define the two column vectors* 

JR 
U = T ~ D  and S = T O ,  

in which the elements s of S are the eigenshiffs obtain- 
able from 

S =A- IU  

in which the inversion is now trivial. We recall a number 
of important properties (cf. Diamond, 1958): 

(i) The elements of S are independent of each other 
because A -1 is diagonal, i.e. they are uncorrelated, so 
that if any s, has its value disturbed in any way, or 
is inaccurately determined, this has no repercussions 
on the values of the remaining sj, unlike the elements of 
O, which are heavily correlated. 

(ii) If we regard the vector O as the position vector 
of the solution point in a polydimensional parameter 
space, then S is also a position vector for the solution 
point, expressed relative to a rotated set of axes. 

(iii) If e' = e + 5e is the matrix of residuals at a point 
50  away from the solution point, i.e. at O + 50,  then 
the sum of the squares of the errors at this point is 

-~ ~R c3R 50  
~"c'=~c+5o 8o JO- 

JR 
5 c -  - -  5 0  and 

JO 

since 

This may be rewritten 

OR -~-~=0. 

~"d = ~a +5SA5S (8S =T50) ,  

which shows that a contour of constant error in the 
neighbourhood of the solution is an ellipsoid in param- 
eter space, this ellipsoid being wholly determined by 
the normal matrix, the eigenvectors of which are the 
principal axes of the ellipsoid, the lengths of which 
are proportional to each 2-*. Thus a small 2 implies 
a large uncertainty in the corresponding direction in 
the position of the solution point, but by (i) this does 
not affect the precision with which the remaining co- 
ordinates (on the rotated axes) are determined. 

(iv) We may replace S by 

S: = Z:A-~U 

* This matrix S is unrela ted to the matrix S used in §2.1, 
which will not  be referred to again. 

and obtain the adopted shifts 

O:=TS:, 
where Z/is a filter matrix having 1 on the diagonal in 
the positions of the f largest ). and zeros elsewhere. By 
suitably choosing the value of f we find those coordin- 
ates, s, of the solution point which are most accurately 
determined and which, by the same token, play the 
largest part in reducing the sum of the squares of the 
errors. These are clearly the most important eigenshifts 
and they will be referred to as dominant. The zeros 
at the remaining diagonal positions of Z:  set the 
remaining elements of S to zero. 

The justification for suppressing the remaining 
eigenshifts is threefold. Firstly, we note that O is built 
up by adding together a number of mutually perpen- 
dicular component vectors, the eigenshifts being their 
magnitudes and the eigenvectors their directions; conse- 
quently every such addition, regardless of the sign of each 
s, increases the distance of the point O from the origin 
and contributes an amount s 2 to OO. If each spindle 
(bond) has unit torsion constant associated with it 
then OO is a measure of the elastic strain energy im- 
posed on the structure in order to fit the guide points 
(assuming its initial conformation to be an equilibrium 
one). 

Now 
~) :O : = ~:T~S: = g:S:= Zs~ 

I 

and each s~ is proportional to 271/2 so that large strain 
energies are introduced by small eigenvalues. 

Secondly [by (iii)] the reduction in c'e' produced by 
moving to the solution point from the origin is SAS, 
i.e. each eigenshift contributes 2s 2 to the reduction of 
de'.  Combining these two results we see that for each 
and every eigenshift which is included 

decrement in ~c attributable 
to this eigenshift 

eigenvalue = 
increment in OO attributable 

to this eigenshift 
o r  

improvement in fit 
strain energy imposed " 

Thus each eigenvalue forms an inverted price tag, the 
large ones cheaply producing a large improvement in the 
fitting, and the small ones introducing large deforma- 
tions and conferring very little benefit, so that there 
may well be a minimum value of 2 below which it is 
not worth going. It also follows from this that under- 
determined problems where, in principle, many solu- 
tions exist (i.e. those with one or more vanishing eigen- 
value) are provided by filtering with the most econo- 
mical solution, i.e. of the many solutions that could be 
provided the one which is actually generated is the 
one with smallest ~)O. 



ROBERT D I A M O N D  261 

The third reason for filtering is that the dominant 
eigenvectors have the greatest range of convergence. 
The equations of condition including second-order 
terms may be written 

OR 
D = ~ +  frO- O + E  

where the ith element of the column matrix E is of the 
form 

02ri 
½ _r z' - - - _ = -  OjO~ = g)F~O 

j k OOjOOk 
where each F~ is a square matrix containing the second 
derivatives of rt. On transforming from O to S we 
obtain 

~R ' r s  + column vector, D = ~ +  -~-O- 

the ith element of which is STFiI"S. 

Now the columns of (~R/c30)T are orthogonal and 
proportional to 2 '  in the sense that 

~R 0R ~ 
T ~  ~O T = A ,  

so that in this form the linear parts of the equations 
of condition represent, for the dominant eigenshifts, 
equations having large coefficients with small values 
of the unknowns, s. The terms involving squares and 
products of the dominant eigenshifts are then neglig- 
ible provided that the transformation T does not yield 
matrices TF~T with systematically enlarged elements in 
positions corresponding to the dominant eigenshifts - 
and there is no reason why it should since each Fi is 
quite unrelated to the normal matrix which T diago- 
nalizes. 

This is the basis of the sliding filter which causes the 
number f of degrees of freedom allowed to O by Z~ 
to be dependent on the current value of the r.m.s. 
error, which is the best available index of the movement 
in O to be expected on any one cycle of refinement. For 
a linear problem the increment in ~)O for each eigen- 

~ 

shift is the decrement in ~ attributable to this eigen- 
shift divided by 2. In this problem, where macro- 
rotations are involved, it is clear that the r.m.s, rotation 
produced in any one cycle of refinement should not 
exceed ~ 1 radian; otherwise the shifts actually pro- 
duced will bear little relation to the required shifts. 
This immediately suggests a minimum value for 2 
such that large rotations do not arise. In the program 
as written, f is set so that three conditions are all 
satisfied, these are that 

(i) the smallest eigenvalue included, ~,min--> ~"8 • C1/n 
where n is the order of the normal matrix and C1 is a 
constant. 

(ii) Amln --> C2~max 
(iii) f < fmax 

where C1, C2 andfmax are all constants which are read 
in as data. Here Ci -1/2 is the largest r.m.s, shift which 
one is prepared to encounter in any one cycle of refine- 

ment, and the function ~gC1/n is recalculated at the 
beginning of each cycle so that the number of degrees 
of freedom allowed to the solution, f,  increases as the 
final solution is approached. C1 may be set generously, 
e.g. Ci-1/2~3 radians, relying on the technique of 
reversion in cases where this results in an over-stepping 
of the convergent region. (See example 3.1 below.) 
Cz serves to ensure that the least accurate eigenshift in- 
cluded is not worse than C~-x/2 times less accurate than 
the most accurate one. The third condition may be 
useful if it is desired to stipulate explicitly the number 
of degrees of freedom to be allowed in any case. 

2.2.4. Delays 

This is a technique designed to provide a measure 
of control over the way in which the strain energy 
OO is distributed amongst the various parameters 
(see also the discussion §4.2). Two types of parameter 
are recognized by the program and these are usually 
used so that spindles coinciding with covalent bonds 
are set up as type 1 parameters and spindles which are 
set up to vary inter-bond angles are type 2 parameters, 
though this usage may be varied. Two delay constants 
are then set for each probe. If delay 1 is 2, for example, 
the first two type 1 parameters (counting from the tip 
of the probe towards the root) are switched off so that 
the tip of the probe then forms a rigid group on the 
end of a flexible mounting. Delay 2 is the number of 
further type 1 parameters that are then counted before 
any type 2 parameters are switched on. By this means 
one may, for example, keep the inter-bond angles 
constant while most of the fitting is being done, but 
allow them freedom only near the root of a probe 
several residues long when the probe reaches far en- 
ough ahead to give a fairly firm indication of the need 
to increase or decrease a bond angle. Such a probe is 
usually the last and usually has Cz set conservatively, 
i.e. to admit only a few eigenshifts, so that large 
strains do not arise. By this means variations of a few 
degrees may be admitted to the tetrahedral angle at 
ct carbon atoms when these are really called for. 

If it is desired to alter the internal configuration of 
a peptide grouping this must be done with type 2 
parameters with delays appropriately set so that the 
configuration of a link is never disturbed until after it 
has been used as prefactor in the building process to 
generate the next residue. 

2.2.5. Movement 

When the rotational shifts O which are to be ap- 
plied to the structure have been evaluated, they must 
clearly be applied in a rigorously circular fashion to 
conserve shape. Conventional rotation matrices are 
not used for this purpose as the alternative is very 
much simpler and probably has an advantage in speed, 
except perhaps near the root of a fairly long probe 
where many atoms may require to be moved through 
the same angle. 
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When an atom is to be rotated through an angle 0 
about a particular spindle the quantities immediately 
available are 0, the spindle vector n, and the position 
vectors of the atom and of the origin of the spindle. If 
we obtain 

0=0n  

and r0 the initial position vector of the atom relative to 
the origin of the spindle, then the final position of the 
atom, relative to the same origin, is 

S rm 
0 

where 
1 

r m =  - - - 0 X r m - i  • 
m 

This is the three-dimensional counterpart of using 
0 z 

the power series e ~° = l + i O - ~ - - . . . t o a c h i e v e  

a rotation 0, and the summation may be taken to any 
required precision. 

These rotational shifts are applied sequentially start- 
ing at the free end of the probe. As each parameter is 
encountered, all the atoms between it and the free 
end of the probe (or side chain) are moved by the above 
process, successive parameters taking the atoms from 
the positions they have been left in by previous 
operations. 

If this process is not carried out accurately, cumu- 
lative errors will arise in the building process as 
described earlier. Such deformations of the link in- 
volving changes of its length in excess of 2 x 10 -4 
have never been encountered. 

3. Examples 
3.1. An unguided bridge 

In this example a chain of five links was built between 
two regions where guide coordinates were given, there 

being no guidance in the intervening span. This parti- 
cular example is chosen to illustrate the range of con- 
vergence of the mathematical procedures just described, 
rather than as a demonstration of their ability to 
postulate chemically reasonable structures. There is, 
in fact, a threefold infinity of solutions to this problem 
as presented to the machine, and the solution actually 
found is determined by the initial conformation and 

the minimization of 6)O at each step and is done with- 
out reference to the steric map of the resulting con- 
formation. It is recognized that this additional criterion 
must be employed before any useful 'structure-guessing' 
can be done, but, as explained in the introduction, 
this was not the primary purpose of the program. In 
the discussion we indicate ways in which it is thought 
that van der Waals and other interactions may be 
introduced. 

Fig.4(a)-(k) shows the initial conformation (a), 
which is a-helical, and the conformation after each of 
ten cycles of the long probe. The end at the bottom of 
each figure is the root end (C terminal in this case) and 
there are two links here whose positions do not alter. 
The lines marked heavily are main chain bonds where 
rotation is allowed, these occur in pairs each side of 
C, except in one case where the residue is proline. The 
sequence in this region is HIS, PRO, GLY, ASN, PHE, 
and coordinates were calculated for all these side 
chains on every cycle as shown in the first and last 
diagrams. These side shains have a total of six rotatable 
bonds, none of which are guided, so that the derivatives 
Or/~O for these angles are all zero. This gives rise to 
six vanishing eigenvalues with eigenvectors involving 
these parameters only. The filtering process excludes 
these, so that no rotations arise in any of the side 
chains. 

There are then ten main chain parameters so that 
the order of the normal matrix is 16; however, it has 

o o o o o 
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o 
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Fig.4. Cycle by cycle record of the conformations adopted by a length of chain which is required to refold itself so that the free 
end of the chain comes into coincidence with the guide points shown as open circles on the left of each diagram. There are two 
peptides at the foot of each figure which do not move; they were guided into those positions and their positions were finalized just 
before this stage of the calculation was reached. The initial conformation shown in (a) is ~-helical. The side chains were car- 
ried throughout the calculation, but for clarity are shown in only the first and last figures. 
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only six non-vanishing eigenvalues for the following 
reason. The four guided atoms form a rigid group and 
it requires six degrees of freedom to position and orient 
such a group; accordingly any parameters in excess of 
six are superfluous. This means that if there are n ( > 6) 
parameters contributing to the position and orientation 
of this rigid group then there are n-6 combinations of 
shifts in these parameters which leave the position and 
orientation of the group unchanged. Such combina- 
tions evidently contribute (if included) to 0 0  but do 
nothing to reduce ee, i.e. they have vanishing eigen- 
values.* 

The parameter nearest the tip of the probe is clearly 
responsible by itself for one vanishing eigenvalue 
because it only rotates one atom about a line through 
itself. (It could, in fact, have been completely excluded 
by setting delay 1 = 1.) The eigenvalue spectrum thus 
consists of six significant eigenvalues in the range 103 

* These considerations imply that if an intermediate port ion 
of any chain is ever to be modified without  altering the two 
regions it connects, then at least seven parameters in the modi-  
fied region must  be varied, except in special cases, e.g. two dis- 
tant  but exactly collinear bonds. 

3 
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Fig. 5. Log of the calculations for Fig.4. At the top of the 
diagram are shown the eigenvalue spectra given as logt02, 
on which is superimposed a bar at the filter level, 2rain, given 
by the r.m.s, error with C1 = 1 as explained in §2.2.3. The 
constant C2 was also set so that not more than four decades 
of the spectrum could pass the filter. Below this are given the 
r.m.s, error in A between the four guide points and the tip 
of the probe, the linearity index (evaluated after reversion, 
if any) and the decimal logarithm of the modulus of each 
eigenshift (evaluated before reversion, if any). Note the 
tendency for reversions to be required if any log Isl exceeds 
zero ,  t h e r e b y  c o n t r i b u t i n g  m o r e  t h a n  1 r a d i a n 2  to  0 ( 9 ,  a n d  
how the sliding filter operates to prevent the premature in- 
clusion of such eigenshifts. For fuller explanation see text. 

to 10 -1, then three of order 10 -6, which are computed 
zeros associated with the superfluous parameters in 
the main chain span, then one of order 10 -14 ( 'round- 
off noise') associated with the parameter at the tip of 
the probe, and six identically zero associated with the 
side chains. The filtering process in this instance never 
admits more than the first six. 

Fig. 5 summarizes the sequence of events for eleven 
cycles of refinement (the last of which merely establishes 
that there is no further change to be made). The eigen- 
value spectrum, the linearity index and the eigenshifts 
are shown for each cycle and the r.m.s, error in A is 
shown between cycles. Each eigenvalue spectrum is 
shown on a logarithmic scale, only the first six being 
shown. The bar across each spectrum is the level for 

2min=~.C1/n determined by the r.m.s, error at the end 
of the previous cycle and only eigenshifts with eigen- 
values above the bar are admitted by the filter. Initially 
the tip of the probe is some 13 A from its guide points 
and with C1 set at unity only the first three eigenshifts 
are included. These yield shifts with an r.m.s, value 
(over the nine significant main chain bonds) of ~ 0-75 
radians, which oversteps the convergent region, and 
the r.m.s, error rises to 16 A; however, one reversion 
(k=0.5)  reduces the residual to 9 A with a linearity 
index of 0.75. It has been estimated that if all six 
eigenshifts had been included on this cycle then the 
r.m.s, shift would have been ~300 radians so that 
little more than one thousandth of the calculated 
shifts could have been applied, implying that some 
hundreds of cycles would have been required to 
achieve convergence. 

Only after cycle three, when the distance is under 
5 A, does the orientation of the guiding group exert 
any influence. The sixth eigenshift is introduced for 
the first time on cycle six. Note that the conformation 
after cycle five is more or less correct except that the 
tip of the probe is required to rotate in its own plane. 
Such a movement requires large alterations to the 
span to achieve quite a small improvement, i.e. it is 
evident from the conformation that no further pro- 
gress can be made unless small eigenvalues are admit- 
ted. The introduction of the sixth eigenshift again 
produces such large shifts that a double reversion (k = 
0.25) is needed on cycle six and a single one on cycle 
seven (which might have benefited from a double one, 
as the single one yields a linearity index of only 0.12). 
From there on the refinement behaves smoothly, the 
final r.m.s, error between the guide points and the 
probe being 0.0044 A. 

3.2. A short bridge 
This example is taken from hen egg-white lysozyme 

(Blake, Koenig, Mair, North, Phillips & Sarma, 1965). 
At the time of writing Phillips and co-workers are 
making a detailed study of their 2 A Fourier map of 
this molecule obtaining provisional coordinates for 
the majority of atoms, and these coordinates are being 
used as guide coordinates to obtain a computed model. 
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For the most part, these computations are straight- 
forward, but the example chosen here is of one point 
in the chain where it was thought to be worth while 
to use the computer method to look for alternative 
solutions. This is residue 16 which is glycine, so that 
the Fourier map shows no side chain to help in orient- 
ing the main chain links, only protuberances which 
are probably carbonyl oxygen atoms, but the tube of 
density between residues 15 and 17 seems to leave some 
room for manoeuvre. 

This is a case where the number of parameters deter- 
mining the conformation of the bridge is just equal to 
the number of degrees of freedom required by the tip 
of the probe, so that there is not a continuum of solu- 
tions as in the previous example but a finite number 
only (Fig. 6). The solution actually obtained therefore 
depends solely on the initial conformation, and this 
may be varied by the use of parameter cards. The first 
solution was obtained without using any parameter 
cards, so that the initial conformation of the links con- 
cerned was a-helical. The second solution was found 
using the first solution as initial conformation but 
modified by the inversion of the 16-17 link and the 
application of - 7 0  ° about ~P15 [i.e. N(15)-C(15)~]. The 
third, fourth and fifth solutions were all obtained using 
the second solution as initial conformation but with 
one or other or both of the peptides 15-16 and 16-17 
inverted and with the same treatment of (P15. (The first 
also differs from the other four in that qh7 [i.e. C(17)~- 
C(17)] was rigid in this case and free in all the others, 
i.e. N(17) was in most cases free to move on a circle.) 
This yielded a total of four final conformations, two 
of the initial conformations converging to the same 
result. All four solutions represent stable minima in 
the least-squares sense and three of them fit well at 
both ends of the bridge and permit the satisfactory 
continuation of building. The choice between them 
may then be made on the basis of the steric map (the 
necessary angles are listed, of course) and comparison 
with the Fourier map. Alternatively, the most promis- 
ing one may be used as an initial conformation and 
additional guidance provided if the Fourier map in- 
dicates that it is not satisfactory as it stands. 

3.3. Other examples 
The technique is also being applied to myoglobin 

where the quality of the guide coordinates available 
is extremely good. Here the r.m.s, error between guide 
coordinates and computed model is typically 0.25/~ 
if all main chain atoms are used alone for guidance, 
or together with just sufficient side chain atoms to 
specify configuration, or about 0.35 A if all atoms are 
used. These figures depend to some extent on the con- 
trol quantities used. 

Haemoglobin has reached a rather different stage. 
Perutz (1965) has built a tentative model of horse 
oxyhaemoglobin based on a knowledge of the se- 
quence, a 6 A Fourier map (Curtis, Muirhead, Perutz, 
Rossmann & North, 1962) and a knowledge of the 

detailed structure of myoglobin. This model is unlikely 
to be correct in every detail, but it is certainly correct 
in its main features and forms an excellent basis for 
further work. A computed replica of this model is 
being set up, and here the facilities of the long probe 
and of parameter cards are particularly useful. For 
example, if side chains are directed with the use only 
of parameter cards and no guide coordinates, or not 
at all, then a complete a-helix only needs guide co- 
ordinates at its ends, and the whole helix may form 
one long probe. A satisfactory representation of the 
FG corner and all the remaining structure down to 
the C-terminus of the fl chain, i.e. about 425 atoms, 
has been produced with 60 guide atoms and 12 param- 

i 

N .°.~ 

Fig. 6. Four short bridges built to the same guide coordinates 
using five different initial conformations (two of the final 
conformations being identical). The heavy lines in each case 
show the final conformation. The open circles are the guide 
coordinates joined by thin lines which, in the unguided por- 
tion, show the conformation obtained by direct reading of 
the electron density map. The broken lines indicate in each 
case the initial conformation, and the root end is at the top. 
The sequence hnre is 15 HIS, 16 GLY, 17 LEU. 
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eter cards* (Fig.7). The time for such a calculation 
depends enormously on the probe lengths used, but 
using the long probe and four short probes of 1,2,3, 
and 6 residues this takes about 3 minutes on an IBM 
7094 or 12 minutes on an IBM 7090. 

* It happens  that  the structure of  valine as provided by 
Par thasarathy & Ramachandran  (1966), which is currently being 
used, is in a conformat ion  which may not be incorporated in an 
~-helix, and needs a rotat ion of ~ + 110 ° in Zl (i.e. the Ca - CB 
bond) to be imposed either by guidance or by parameter  cards. 
This accounts for 7 of  the 12 such cards, and a further 2 
have no function except to posit ion the others correctly. 

G helix \ ~  . ~ / / '  \, / " "  , H helix 

\ 

J l | l l l . , , , I  

o A 1o 

Fig.7. A computed  replica of the FG corner and the G and H 
helices of the fl chain of horse oxyhaemoglobin.  The guide 
points are taken f rom Perutz's model  (Perutz, 1965) and 
(except for three) are shown as open circles close to the cor- 
responding computed  points. The three solid circles are 
guide points in the plane of the paper. Bonds which had 
rotat ions imposed on their initial conformat ion  by param- 
eter cards are shown darker;  these include all valine side 
chains. 

4. Discussion 

4.1. Interactions between atoms 

It is recognized that a weakness of the method in 
its present form is that it pays no attention to van der 
Waals interactions or any other influence that in reality 
affects the true conformation, and which certainly af- 
fects the acceptability or otherwise of any hypothetical 
conformation. It has hitherto been considered that it 
is for the originator of the guide coordinates to see to 
it that these do not imply impossible conformations, 
and that the user should scrutinize the results with a 
steric map. In most applications this is satisfactory, 
but for model postulating, as in the first example 
above, this is not sufficient. 

The problem arises, therefore, of devising a procedure 
which simultaneously heeds two or more criteria which 
may even be in conflict, and which certainly will be 
in conflict, at least temporarily, if the guide coordin- 
ates require that a residue must cross a forbidden 
region of the steric map in order to reach another 
permitted region. Any technique which heeds the 
various criteria in turn, instead of simultaneously, is 
liable to oscillate. The proposals outlined below appear 
to offer at least some hope of success. 

Suppose that a bridge is being erected, as in the 
first example, to reach a certain footing without 
anything being specified about the conformation in the 
span except that it must be sterically permissible, then 
one may suppose the atoms to be guided in up to two 
ways: (i) by guide coordinates, (ii) by supposing that 
where a close approach occurs each atom is (for 
1 cycle anyway) guided towards a point which is half 
the overlap distance away in a direction corresponding 
to separating the atoms concerned. We may then set 
up two sets of normal equations at each cycle corres- 
ponding to (i) and (ii), of which the second will be 
null if it happens that no overlap occurs. Now diagonal- 
ize the first matrix by a transformation T, as before, 
and subject the second to the same transformation. 
(This will not diagonalize it.) The second is then ef- 
fectively a set of simultaneous equations for the same 
unknowns, the eigenshifts, as is the first transformed 
matrix but we use the first in conjunction with a filter, 
so that only some of the eigenshifts are determined 
by matrix 1. Those which are left undetermined by 
matrix 1 are those which have comparatively little 
influence on the fitting anyway, and might as well have 
their values determined by the other criterion, i.e. by 
the corresponding partition of the second normal ma- 
trix, as transformed by T. This partition should also 
itself be diagonalized and filtered subsequently. This 
procedure has the merit that, in the linear region anyway, 
the sets of shifts provided by each criterion are orthog- 
onal and therefore cannot interact or oscillate. There 
then remain questions concerning the appropriate po- 
sitioning of the filter, which now becomes in effect an 
interface. Such questions are best answered from ex- 

A C 2 1  - 6  
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perience, and these ideas have not yet been imple- 
mented. 

4.2. Weighted parameters 
In discussing filtering ({}2.2.3) we pointed out that 

one effect of filtering is to prevent the build-up of a 
large elastic strain energy as represented by the 
quantity 6)O. This analogy may be taken further so 
that the quantity minimized by filtering is not 27 0 2 but 

i 
27 o)10 2 and the o9~ may be varied at will to represent 

the differing torsion constants of spindles of different 
kinds, especially between bond angles and dihedral 
angles. These considerations are only valid, of course, 
with a filtered solution. If the solution is not filtered it 
implies that we are prepared to pay any price in terms 
of deformation, in order to achieve a fit, in which case 
it would make no difference how the parameters are 
weighted. As outlined here, it is meaningful to speak 
of strain energy only if it is supposed that the initial 
conformation for each cycle is an equilibrium one; 
nevertheless, this line of development seems germane 
and may find application when more is known of 
conformational potential functions such as those of 
De Santis, Giglio, Liquori & Ripamonti (1965), Dun- 
hill & Phillips (1966), Brant & Flory (1965), and others. 

The theory is as follows. We revert to the normal 
equations and introduce a diagonal matrix W, the 
elements of which are k/o)~, as follows: 

0R 0R 0R 
- - D - - -  O 
00  00  00  

~/-1 OR D=~$/_ 1 OR OR W_lW O 
-gg 0o 0---g 

T~¢_ 1 OR OR OR 
D =T~Iv'-I 0 0  0 0  W-1TTWO 

where T diagonalizes ~¢-1 OR OR 
as before, giving 0 0  0 0  W-~' and we filter, 

Of,w=W_I,~Zf(T~V~,_I OR OR W_l~,)-lT~c_t OR 
O0 O0 -~-~ D. 

Suppose that each angular shift 0~, is replaced by q~ 
such that 

~ i  = 1/coi .  0z; 

then the second equation above represents the normal 
equations for the q~ so that the subsequent filtering 

minimizes 2" ~.  
This also offers other possibilities. With the present 

methods each probe is in this sense elastically uniform, 
so that it tends to bend from its root to fit at the tip 
(cf. an elastic beam clamped at one end). If each coi 
is set equal to the corresponding diagonal element of 

,0"R OR l~r_ 1 OR OR 's 
- -  so that . - -  - -  W -1 has 1 on the diag- 

00  c~O 00  00  
onal (and is the 'correlation matrix' for the variables 0) 
then the tip of the probe is made elastically softer than 
the root end so that the growing point is in a sense 

more sensitive than established regions. This might 
serve to reduce the number of probes required. ° 

4.3. Real space refinement 
A scheme for the refinement of a chain structure 

by direct reference to the X-ray observations has 
already been described (Diamond, 1965), and may be 
referred to as reciprocal space refinement. The present 
technique may also be developed to provide real space 
refinement in which the difference vectors d which 

make up D will be replaced by \ - ~ - ~ ]  - ~  where 

Q is the calculated electron density and the round 
bracket contains the nine second derivatives of 0 at the 
point in question, i.e. the required movement of each 
atom will be obtained from the gradient and curvature 
of the electron density. 

It is envisaged that the technique in its present form 
would be employed first and that the output values of 
the rotations 0 would be used to specify the initial 
conformation to the refining program so that the latter 
is not called upon to search the Fourier map for 
possible solutions. 

It is also clear that the filter level would have to be 
dependent on the resolution of the electron density map, 
since in a low resolution map only a general indication 
of positions is available which is sufficient only to 
control the dominant eigenshifts. 

I should like to acknowledge the use of a subroutine 
known as BCHOW obtained from the IBM Share 
Library and written by D.W. Matula which has been 
used (with some modification) to diagonalize the nor- 
mal matrices. 

I am also grateful to Dr D. C. Phillips for permission 
to publish examples taken from the structure of lyso- 
zyme. 
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